Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Small ; : e2400408, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709208

RESUMO

Stent-assisted coiling is a main treatment modality for intracranial aneurysms (IAs) in clinics, but critical challenges remain to be overcome, such as exogenous implant-induced stenosis and reliance on antiplatelet agents. Herein, an endovascular approach is reported for IA therapy without stent grafting or microcatheter shaping, enabled by active delivery of thrombin (Th) to target aneurysms using innovative phase-change material (PCM)-coated magnetite-thrombin (Fe3O4-Th@PCM) FTP nanorobots. The nanorobots are controlled by an integrated actuation system of dynamic torque-force hybrid magnetic fields. With robust intravascular navigation guided by real-time ultrasound imaging, nanorobotic collectives can effectively accumulate and retain in model aneurysms constructed in vivo, followed by controlled release of the encapsulated Th for rapid occlusion of the aneurysm upon melting the protective PCM (thermally responsive in a tunable manner) through focused magnetic hyperthermia. Complete and stable aneurysm embolization is confirmed by postoperative examination and 2-week postembolization follow-up using digital subtraction angiography (DSA), contrast-enhanced ultrasound (CEUS), and histological analysis. The safety of the embolization therapy is assessed through biocompatibility evaluation and histopathology assays. This strategy, seamlessly integrating secure drug packaging, agile magnetic actuation, and clinical interventional imaging, avoids possible exogenous implant rejection, circumvents cumbersome microcatheter shaping, and offers a promising option for IA therapy.

2.
RSC Adv ; 14(19): 13180-13189, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38655468

RESUMO

Disulfiram (DSF) can target and kill cancer cells by disrupting cellular degradation of extruded proteins and has therefore received particular attention for its tumor chemotherapeutic potential. However, the uncontrollable Cu2+/DSF ratio reduces the efficacy of DSF-mediated chemotherapy. Herein, self-supplying Cu2+ and oxidative stress synergistically enhanced DSF-mediated chemotherapy is proposed for melanoma-based on PVP-coated CuO2 nanodots (CPNDs). Once ingested, DSF is broken down to diethyldithiocarbamate (DTC), which is delivered into a tumor via the circulation. Under the acidic tumor microenvironment, CPNDs produce sufficient Cu2+ and H2O2. DTC readily chelates Cu2+ ions to generate CuET, which shows antitumor efficacy. CuET-mediated chemotherapy can be enhanced by H2O2. Sufficient Cu2+ generation can guarantee the maximum efficacy of DSF-mediated chemotherapy. Furthermore, released Cu2+ can be reduced to Cu+ by glutathione (GSH) and O2- in tumor cells, and Cu+ can react with H2O2 to generate toxic hydroxyl radicals (·OH) via a Fenton-like reaction, promoting the efficacy of CuET. Therefore, this study hypothesizes that employing CPNDs instead of Cu2+ ions could enhance DSF-mediated melanoma chemotherapy, providing a simple but efficient strategy for achieving chemotherapeutic efficacy.

3.
Adv Sci (Weinh) ; : e2308587, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647388

RESUMO

The treatment of diabetic periodontitis poses a significant challenge due to the presence of local inflammation characterized by excessive glucose concentration, bacterial infection, and high oxidative stress. Herein, mesoporous silica nanoparticles (MSN) are embellished with gold nanoparticles (Au NPs) and loaded with manganese carbonyl to prepare a carbon monoxide (CO) enhanced multienzyme cooperative hybrid nanoplatform (MSN-Au@CO). The Glucose-like oxidase activity of Au NPs catalyzes the oxidation of glucose to hydrogen peroxide (H2O2) and gluconic acid,and then converts H2O2 to hydroxyl radicals (•OH) by peroxidase-like activity to destroy bacteria. Moreover, CO production in response to H2O2, together with Au NPs exhibited a synergistic anti-inflammatory effect in macrophages challenged by lipopolysaccharides. The underlying mechanism can be the induction of nuclear factor erythroid 2-related factor 2 to reduce reactive oxygen species, and inhibition of nuclear factor kappa-B signaling to diminish inflammatory response. Importantly, the antibacterial and anti-inflammation effects of MSN-Au@CO are validated in diabetic rats with ligature-induced periodontitis by showing decreased periodontal bone loss with good biocompatibility. To summarize, MSN-Au@CO is fabricate to utilize glucose-activated cascade reaction to eliminate bacteria, and synergize with gas therapy to regulate the immune microenvironment, offering a potential direction for the treatment of diabetic periodontitis.

4.
J Nanobiotechnology ; 22(1): 213, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689259

RESUMO

BACKGROUND: The main issues faced during the treatment of apical periodontitis are the management of bacterial infection and the facilitation of the repair of alveolar bone defects to shorten disease duration. Conventional root canal irrigants are limited in their efficacy and are associated with several side effects. This study introduces a synergistic therapy based on nitric oxide (NO) and antimicrobial photodynamic therapy (aPDT) for the treatment of apical periodontitis. RESULTS: This research developed a multifunctional nanoparticle, CGP, utilizing guanidinylated poly (ethylene glycol)-poly (ε-Caprolactone) polymer as a carrier, internally loaded with the photosensitizer chlorin e6. During root canal irrigation, the guanidino groups on the surface of CGP enabled effective biofilm penetration. These groups undergo oxidation by hydrogen peroxide in the aPDT process, triggering the release of NO without hindering the production of singlet oxygen. The generated NO significantly enhanced the antimicrobial capability and biofilm eradication efficacy of aPDT. Furthermore, CGP not only outperforms conventional aPDT in eradicating biofilms but also effectively promotes the repair of alveolar bone defects post-eradication. Importantly, our findings reveal that CGP exhibits significantly higher biosafety compared to sodium hypochlorite, alongside superior therapeutic efficacy in a rat model of apical periodontitis. CONCLUSIONS: This study demonstrates that CGP, an effective root irrigation system based on aPDT and NO, has a promising application in root canal therapy.


Assuntos
Biofilmes , Nanopartículas , Óxido Nítrico , Fotoquimioterapia , Animais , Fotoquimioterapia/métodos , Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Biofilmes/efeitos dos fármacos , Ratos , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Periodontite Periapical/terapia , Periodontite Periapical/tratamento farmacológico , Masculino , Irrigantes do Canal Radicular/farmacologia , Irrigantes do Canal Radicular/química , Ratos Sprague-Dawley , Infecções Bacterianas/tratamento farmacológico , Clorofilídeos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
5.
J Colloid Interface Sci ; 663: 787-800, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38442520

RESUMO

Ferroptosis is characterized by the lethal accumulation of lipid reactive oxygen species (ROS), which has great potential for tumor therapy. However, developing new ferroptosis-inducing strategies by combining nanomaterials with small molecule inducers is important. In this study, an enzyme-gated biodegradable natural-product delivery system based on lactate oxidase (LOD)-gated biodegradable iridium (Ir)-doped hollow mesoporous organosilica nanoparticles (HMONs) loaded with honokiol (HNK) (HNK@Ir-HMONs-LOD, HIHL) is designed to enhance ferroptosis in colon tumor therapy. After reaching the tumor microenvironment, the outer LOD dissociates and releases the HNK to induce ferroptosis. Moreover, the released dopant Ir4+ and disulfide-bridged organosilica frameworks deplete intracellular glutathione (GSH), which is followed by GSH-mediated Ir(IV)/Ir(III) conversion. This leads to the repression of glutathione peroxidase 4 (GPX4) activity and decomposition of intratumoral hydrogen peroxide (H2O2) into hydroxyl radicals (•OH) by Ir3+-mediated Fenton-like reactions. Moreover, LOD efficiently depletes lactic acid to facilitate the generation of H2O2 and boost the Fenton reaction, which in turn enhances ROS generation. With the synergistic effects of these cascade reactions and the release of HNK, notable ferroptosis efficacy was observed both in vitro and in vivo. This combination of natural product-induced and lactic acid-responsive sequential production of H2O2 as well as the consumption of glutathione may provide a new paradigm for achieving effective ferroptosis-based cancer therapy.


Assuntos
Compostos Alílicos , Compostos de Bifenilo , Neoplasias do Colo , Ferroptose , Lignanas , Fenóis , Humanos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Glutationa , Materiais Biocompatíveis , Irídio , Ácido Láctico , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Eur J Pharmacol ; 970: 176493, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484925

RESUMO

Excessive activation of FGF19/fibroblast growth factor receptor 4 (FGFR4) signaling is associated with poor survival of patients with hepatocellular carcinoma (HCC). FGFR4 inhibitors show promise for HCC treatment. F30, an indazole derivative designed through computer-aided drug design targeting FGFR4, demonstrated anti-HCC activity as described in our previous studies. However, the precise molecular mechanisms underlying F30's anticancer effects remain largely unexplored. We report here that F30 could effectively induce ferroptosis in HCC cells. The concentrations of cellular ferrous iron, the peroxidation of cell membranes and the homeostasis of reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) were dysregulated by F30, thereby affecting cellular redox status. Induction of ferroptosis in HCC by F30 was inhibited by specific ferroptosis inhibitor ferrostatin-1. F30 upregulates various ferroptosis-related genes, including the heme oxygenase enzymes 1 (HMOX1), a key mediator of redox regulation. Surprisingly, F30-induced ferroptosis in HCC is dependent on HMOX1. The dysregulation of cellular ferrous iron concentrations and cell membrane peroxidation was rescued when knocking down HMOX1 with specific small interfering RNA. These findings shed light on the molecular mechanisms underlying FGFR4-targeting F30's anti-HCC effects and suggest that FGFR4 inactivation could be beneficial for HCC treatment involving ferroptosis.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ferro , Heme Oxigenase-1
7.
Anal Chim Acta ; 1298: 342383, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462344

RESUMO

Developing an accurate and precise approach for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) is significant for food safety surveillance. Herein, a photoelectrochemical sensing platform was constructed based on polycarboxylic ionic liquid functionalized metal-organic framework integrated with gold nanoparticles (Yb-MOFs@AuNPs). Sulfhydryl functionalized hairpin DNA (hDNA) was immobilized on a Yb-MOFs@AuNPs modified glassy carbon electrode (GCE) surface through Au-S bond. After blocking residual active binding sites with BSA, gold nanoparticles-labeled AFB1 aptamer (AuNPs-Apt 1) and gold nanorods-labeled OTA aptamer (AuNRs-Apt 2) were introduced to construct a photoelectrochemical aptasensor for the simultaneous determination of AFB1 and OTA. Due to the surface plasmon resonance effect and the nanometer size effect of gold nanomaterials, the photoelectrochemical aptasensor can output photocurrent responses as being excited with different wavelengths at 520 nm and 808 nm, respectively. When the AFB1 and OTA concentration in the range of 0.001-50.0 ng mL-1, a good linear relationship between the photocurrent difference (ΔI) before and after recognizing targets and the logarithm of AFB1 or OTA concentration was obtained. The detection limits for AFB1 and OTA were 0.40 pg mL-1 and 0.19 pg mL-1, respectively. AFB1 and OTA in corn samples were detected simultaneously by the photoelectrochemical aptasensor.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Líquidos Iônicos , Nanopartículas Metálicas , Ocratoxinas , Ouro/química , Aflatoxina B1/análise , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Eletroquímicas
8.
Adv Sci (Weinh) ; 11(14): e2308092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308198

RESUMO

Abnormal activation of the intestinal mucosal immune system, resulting from damage to the intestinal mucosal barrier and extensive invasion by pathogens, contributes to the pathogenesis of inflammatory bowel disease (IBD). Current first-line treatments for IBD have limited efficacy and significant side effects. An innovative H2S-releasing montmorillonite nanoformulation (DPs@MMT) capable of remodeling intestinal mucosal immune homeostasis, repairing the mucosal barrier, and modulating gut microbiota is developed by electrostatically adsorbing diallyl trisulfide-loaded peptide dendrimer nanogels (DATS@PDNs, abbreviated as DPs) onto the montmorillonite (MMT) surface. Upon rectal administration, DPs@MMT specifically binds to and covers the damaged mucosa, promoting the accumulation and subsequent internalization of DPs by activated immune cells in the IBD site. DPs release H2S intracellularly in response to glutathione, initiating multiple therapeutic effects. In vitro and in vivo studies have shown that DPs@MMT effectively alleviates colitis by eliminating reactive oxygen species (ROS), inhibiting inflammation, repairing the mucosal barrier, and eradicating pathogens. RNA sequencing revealed that DPs@MMT exerts significant immunoregulatory and mucosal barrier repair effects, by activating pathways such as Nrf2/HO-1, PI3K-AKT, and RAS/MAPK/AP-1, and inhibiting the p38/ERK MAPK, p65 NF-κB, and JAK-STAT3 pathways, as well as glycolysis. 16S rRNA sequencing demonstrated that DPs@MMT remodels the gut microbiota by eliminating pathogens and increasing probiotics. This study develops a promising nanoformulation for IBD management.


Assuntos
Bentonita , Doenças Inflamatórias Intestinais , Humanos , Bentonita/metabolismo , Fosfatidilinositol 3-Quinases , RNA Ribossômico 16S/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal
9.
Acta Biomater ; 177: 347-360, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38373525

RESUMO

Colon mucosal overexpression of reactive oxygen and nitrogen species (RONS) accelerates the development of inflammatory bowel disease (IBD) and destroys the mucosa and its barrier. IBD can be alleviated by removing RONS from the inflamed colon. The preparation of strong and efficient nanoantioxidants remains a challenge despite the development of numerous nanoantioxidants. In this paper, Zn-TA nanoparticles with fine hollow microstructure (HZn-TA) were successfully prepared and could be effectively used to treat IBD. In the first step, ZIF-8 nanoparticles were synthesized by a one-pot method. On this basis, HZn-TA nanoparticles were etched by TA, and a multifunctional nanase was developed for the treatment of IBD. RONS, including reactive oxygen species (ROS) and nitric oxide (NO), can be eliminated to increase cell survival following Hydrogen peroxide (H2O2) stimulation, including reactive oxygen species (ROS) and nitric oxide (NO with hydrogen peroxide (H2O2). In a model for preventing and delaying acute colitis, clearance of RONS has been shown to reduce intestinal inflammation in mice by reducing colon damage, proinflammatory cytokine levels, the spleen index, and body weight. Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate zonula occludens protein 1 (ZO-1) and claudin-1 expression. Based on the results of this study, HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS. Therefore, we pioneered the application of HZn-TA nanoparticles for the treatment of IBD, which are capable of clearing RONS without significant adverse effects. STATEMENT OF SIGNIFICANCE: ➢ HZn-TA nanoparticles were successfully prepared and could be effectively used to treat IBD. ➢ Intestinal mucosal healing can be promoted by HZn-TA nanoparticles, which can upregulate ZO-1 and claudin-1 expression. ➢ HZn-TA nanoparticles were able to effectively treat IBD with minimal adverse effects by being biocompatible, multienzyme active, and capable of scavenging RONS.


Assuntos
Peróxido de Hidrogênio , Doenças Inflamatórias Intestinais , Polifenóis , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Zinco/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Óxido Nítrico/metabolismo , Claudina-1/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo
10.
Transl Cancer Res ; 13(1): 394-412, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38410204

RESUMO

Background: Radiotherapy (RT) is a mainstay of head and neck squamous cell carcinoma (HNSCC) treatment. Due to the influence of RT on tumor cells and immune/stromal cells in microenvironment, some studies suggest that immunologic landscape could shape treatment response. To better predict the survival based on genomic data, we developed a prognostic model using tumor-infiltrating immune cell (TIIC) signature to predict survival in patients undergoing RT for HNSCC. Methods: Gene expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Data from HNSCC patients undergoing RT were extracted for analysis. TIICs prevalence in HNSCC patients was quantified by gene set variation analysis (GSVA) algorithm. TIICs and post-RT survival were analyzed using univariate Cox regression analysis and used to construct and validate a tumor-infiltrating cells score (TICS). Results: Five of 26 immune cells were significantly associated with HNSCC prognosis in the training cohort (all P<0.05). Kaplan-Meier (KM) survival curves showed that patients in the high TICS group had better survival outcomes (log-rank test, P<0.05). Univariate analyses demonstrated that the TICS had independent prognostic predictive ability for RT outcomes (P<0.05). Patients with high TICS scores showed significantly higher expression of immune-related genes. Functional pathway analyses further showed that the TICS was significantly related to immune-related biological process. Stratified analyses supported integrating TICS and tumor mutation burden (TMB) into individualized treatment planning, as an adjunct to classification by clinical stage and human papillomavirus (HPV) infection. Conclusions: The TICS model supports a personalized medicine approach to RT for HNSCC. Increased prevalence of TIIC within the tumor microenvironment (TME) confers a better prognosis for patients undergoing treatment for HNSCC.

11.
BMJ Open ; 14(2): e079969, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38401893

RESUMO

INTRODUCTION: Radiographic bone age (BA) assessment is widely used to evaluate children's growth disorders and predict their future height. Moreover, children are more sensitive and vulnerable to X-ray radiation exposure than adults. The purpose of this study is to develop a new, safer, radiation-free BA assessment method for children by using three-dimensional ultrasound (3D-US) and artificial intelligence (AI), and to test the diagnostic accuracy and reliability of this method. METHODS AND ANALYSIS: This is a prospective, observational study. All participants will be recruited through Paediatric Growth and Development Clinic. All participants will receive left hand 3D-US and X-ray examination at the Shanghai Sixth People's Hospital on the same day, all images will be recorded. These image related data will be collected and randomly divided into training set (80% of all) and test set (20% of all). The training set will be used to establish a cascade network of 3D-US skeletal image segmentation and BA prediction model to achieve end-to-end prediction of image to BA. The test set will be used to evaluate the accuracy of AI BA model of 3D-US. We have developed a new ultrasonic scanning device, which can be proposed to automatic 3D-US scanning of hands. AI algorithms, such as convolutional neural network, will be used to identify and segment the skeletal structures in the hand 3D-US images. We will achieve automatic segmentation of hand skeletal 3D-US images, establish BA prediction model of 3D-US, and test the accuracy of the prediction model. ETHICS AND DISSEMINATION: The Ethics Committee of Shanghai Sixth People's Hospital approved this study. The approval number is 2022-019. A written informed consent will be obtained from their parent or guardian of each participant. Final results will be published in peer-reviewed journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER: ChiCTR2200057236.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Adulto , Criança , Humanos , China , Estudos Prospectivos , Reprodutibilidade dos Testes
12.
Adv Healthc Mater ; : e2303027, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323853

RESUMO

Effective neuroprotective agents are required to prevent neurological damage caused by reactive oxygen species (ROS) generated by cerebral ischemia-reperfusion injury (CIRI) following an acute ischemic stroke. Herein, it is aimed to develop the neuroprotective agents of cerium oxide loaded with platinum clusters engineered modifications (Ptn -CeO2 ). The density functional theory calculations show that Ptn -CeO2 could effectively scavenge ROS, including hydroxyl radicals (·OH) and superoxide anions (·O2 - ). In addition, Ptn -CeO2 exhibits the superoxide dismutase- and catalase-like enzyme activities, which is capable of scavenging hydrogen peroxide (H2 O2 ). The in vitro studies show that Ptn -CeO2 could adjust the restoration of the mitochondrial metabolism to ROS homeostasis, rebalance cytokines, and feature high biocompatibility. The studies in mice CIRI demonstrate that Ptn -CeO2 could also restore cytokine levels, reduce cysteine aspartate-specific protease (cleaved Caspase 3) levels, and induce the polarization of microglia to M2-type macrophages, thus inhibiting the inflammatory responses. As a result, Ptn -CeO2 inhibits the reperfusion-induced neuronal apoptosis, relieves the infarct volume, reduces the neurological severity score, and improves cognitive function. Overall, these findings suggest that the prominent neuroprotective effect of the engineered Ptn -CeO2 has a significant neuroprotective effect and provides a potential therapeutic alternative for CIRI.

13.
Exp Ther Med ; 27(2): 51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234624

RESUMO

Essential hypertension is a notable threat for the older (age, ≥65 years) population. However, to the best of our knowledge, a real-world study assessing olmesartan medoxomil-amlodipine besylate (OM-AML) tablets in older Chinese patients with essential hypertension has not been performed. Therefore, the present study aimed to evaluate the efficacy and safety of OM-AML tablets in these patients. A total of 463 older Chinese patients with essential hypertension treated with OM-AML (20/5 mg) tablets (Sevikar®) were analyzed in a prospective, single-arm, multi-center, real-world study. Seated systolic blood pressure (SeSBP) and seated diastolic blood pressure (SeDBP) at baseline, and at week (W)4 and W8 after OM-AML tablet administration were measured. The mean ± standard error change of SeSBP/SeDBP was -10.3±0.8/-4.6±0.5 and -12.5±0.8/-5.6±0.5 mmHg at W4 and W8, respectively. At W4, 74.1 and 26.8% of patients achieved BP target according to the China and American Heart Association (AHA) criteria, while at W8, 78.0 and 38.7% of patients reached these BP targets accordingly. Finally, 76.5 and 80.5% of patients achieved BP response at W4 and W8, respectively. Furthermore, home-measured SeSBP and SeDBP were significantly decreased from W1 to W8 (both P<0.001). Additionally, the satisfaction of both patients and physicians was elevated at W8 compared with at W0 (both P<0.001). The medication possession rate from baseline to W4 and W8 was 95.5 and 92.5%. The most common drug-associated adverse events by system organ classes were nervous system disorder (4.5%), vascular disorder (2.8%), and general disorder and administration site conditions (2.6%), which were generally mild. In conclusion, OM-AML tablets may be considered effective and safe in lowering BP, enabling the achievement of guideline-recommended BP targets in older Chinese patients with essential hypertension.

14.
J Clin Hypertens (Greenwich) ; 26(1): 5-16, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37667532

RESUMO

There lacks real-world study with a large sample size assessing olmesartan medoxomil-amlodipine besylate (OM-AML) tablet. Therefore, this study aimed to evaluate the efficacy and safety of OM-AML tablet in patients with essential hypertension. Totally, 1341 patients from 36 medical centers with essential hypertension who took OM-AML (20/5 mg) tablet were analyzed in the current prospective, single-arm, multi-center, real-world study (SVK study). Seated systolic blood pressure (SeSBP) and seated diastolic blood pressure (SeDBP) at baseline, week (W)4 and W8 were measured. The mean (±SE) change of SeSBP/SeDBP was -10.8 ± 0.4/-6.6 ± 0.3 mmHg at W4 and -12.7 ± 0.5/-7.6 ± 0.3 mmHg at W8, respectively. At W4, 78.8% and 29.0% patients achieved BP target by China and American Heart Association (AHA) criteria; at W8, 84.7% and 36.5% patients reached blood pressure (BP) target by China and AHA criteria, accordingly. Meanwhile, 80.2% and 86.4% patients achieved BP response at W4 and W8, respectively. Home-measured SeSBP and SeDBP decreased from W1 to W8 (both p < .001). Besides, patients' and physicians' satisfaction were elevated at W8 compared with W0 (both p < .001). The medication possession rate was 94.8% from baseline to W4 and 91.3% from baseline to W8. The most common drug-related adverse events were nervous system disorders (4.6%), vascular disorders (2.6%), and general disorders and administration site conditions (2.3%) by system organ class, which were generally mild and manageable. In conclusion, OM-AML tablet is one of the best antihypertensive agents in patients with essential hypertension.


Assuntos
Combinação Besilato de Anlodipino e Olmesartana Medoxomila , Hipertensão , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hipertensão/induzido quimicamente , Olmesartana Medoxomila/farmacologia , Anlodipino/efeitos adversos , Hidroclorotiazida/uso terapêutico , Tetrazóis/farmacologia , Imidazóis/efeitos adversos , Quimioterapia Combinada , Método Duplo-Cego , Anti-Hipertensivos/efeitos adversos , Pressão Sanguínea/fisiologia , Hipertensão Essencial/tratamento farmacológico , Leucemia Mieloide Aguda/induzido quimicamente , Leucemia Mieloide Aguda/tratamento farmacológico
15.
Adv Healthc Mater ; 13(9): e2303361, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38115718

RESUMO

Combining hyperthermic intraperitoneal chemotherapy with cytoreductive surgery is the main treatment modality for peritoneal metastatic (PM) carcinoma despite the off-target effects of chemotherapy drugs and the ineluctable side effects of total abdominal heating. Herein, a laser-integrated magnetic actuation system that actively delivers doxorubicin (DOX)-grafted magnetic nanorobot collectives to the tumor site in model mice for local hyperthermia and chemotherapy is reported. With intraluminal movements controlled by a torque-force hybrid magnetic field, these magnetic nanorobots gather at a fixed point coinciding with the position of the localization laser, moving upward against gravity over a long distance and targeting tumor sites under ultrasound imaging guidance. Because aggregation enhances the photothermal effect, controlled local DOX release is achieved under near-infrared laser irradiation. The targeted on-demand photothermal therapy of multiple PM carcinomas while minimizing off-target tissue damage is demonstrated. Additionally, a localization/treatment dual-functional laser-integrated magnetic actuation system is developed and validated in vivo, offering a potentially clinically feasible drug delivery strategy for targeting PM and other intraluminal tumors.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias Peritoneais , Animais , Camundongos , Neoplasias Peritoneais/tratamento farmacológico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Hipertermia Induzida/métodos , Fototerapia/métodos , Raios Infravermelhos
16.
J Nanobiotechnology ; 21(1): 463, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044437

RESUMO

Bacterial infection in skin and soft tissue has emerged as a critical concern. Overreliance on antibiotic therapy has led to numerous challenges, including the emergence of multidrug-resistant bacteria and adverse drug reactions. It is imperative to develop non-antibiotic treatment strategies that not only exhibit potent antibacterial properties but also promote rapid wound healing and demonstrate biocompatibility. Herein, a novel multimodal synergistic antibacterial system (SNO-CS@MoS2) was developed. This system employs easily surface-modified thin-layer MoS2 as photothermal agents and loaded with S-nitrosothiol-modified chitosan (SNO-CS) via electrostatic interactions, thus realizing the combination of NO gas therapy and photothermal therapy (PTT). Furthermore, this surface modification renders SNO-CS@MoS2 highly stable and capable of binding with bacteria. Through PTT's thermal energy, SNO-CS@MoS2 rapidly generates massive NO, collaborating with PTT to achieve antibacterial effects. This synergistic therapy can swiftly disrupt the bacterial membrane, causing protein leakage and ATP synthesis function damage, ultimately eliminating bacteria. Notably, after effectively eliminating all bacteria, the residual SNO-CS@MoS2 can create trace NO to promote fibroblast migration, proliferation, and vascular regeneration, thereby accelerating wound healing. This study concluded that SNO-CS@MoS2, a novel multifunctional nanomaterial with outstanding antibacterial characteristics and potential to promote wound healing, has promising applications in infected soft tissue wound treatment.


Assuntos
Nanoestruturas , Óxido Nítrico , Molibdênio/farmacologia , Molibdênio/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanoestruturas/química , Regeneração
17.
Lab Anim Res ; 39(1): 35, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38115139

RESUMO

Sex difference has shown in the arthritis diseases in human population and animal models. We investigate how the sex and symmetry vary among mouse models with different genomic backgrounds. Disease data of sex and limbs accumulated in the past more than two decades from four unique populations of murine arthritis models were analyzed. They are (1) interleukin-1 receptor antagonist (IL-1ra) deficient mice under Balb/c background (Balb/c KO); (2) Mice with collagen II induced arthritis under DBA/1 background; (3) Mice with collagen II induced arthritis under C57BL/6 (B6) background and (4) A F2 generation population created by Balb/c KO X DBA/1 KO. Our data shows that there is a great variation in sexual dimorphism for arthritis incidence and severity of arthritis in mice harboring specific genetic modifications. For a F2 population, the incidence of arthritis was 57.1% in female mice and 75.6% in male mice. There was a difference in severity related to sex in two populations: B6.DR1/ B6.DR4 (P < 0.001) and F2 (P = 0.023) There was no difference Balb/c parental strain or in collagen-induced arthritis (CIA) in DBA/1 mice. Among these populations, the right hindlimbs are significantly higher than the scores for the left hindlimbs in males (P < 0.05). However, when examining disease expression using the collagen induced arthritis model with DBA/1 mice, sex-dimorphism did not reach statistical significance, while left hindlimbs showed a tendency toward greater disease expression over the right. Sexual dimorphism in disease expression in mouse models is strain and genomic background dependent. It sets an alarm that potential variation in sexual dimorphism among different racial and ethnic groups in human populations may exist. It is important to not only include both sexes and but also pay attention to possible variations caused by disease expression and response to treatment in all the studies of arthritis in animal models and human populations.

18.
Trends Mol Med ; 29(12): 976-978, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863716

RESUMO

Yang et al. recently demonstrated the high potential of liquid metal microspheres (LM MSs) in cancer therapy. By amplifying the effects of magnetic hyperthermia and embolization, LM MSs not only target primary tumors, but also potentiate immune defenses. This dual-action approach effectively curtails distant tumor growth, marking a pivotal advancement in cancer immunotherapy.


Assuntos
Embolização Terapêutica , Hipertermia Induzida , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia , Terapia Combinada
19.
Front Bioeng Biotechnol ; 11: 1173169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214283

RESUMO

Background: Conventional therapies reduce lymphedema but do not cure it because they cannot modulate the pathophysiology of secondary lymphedema. Lymphedema is characterized by inflammation. We hypothesized that low-intensity pulsed ultrasound (LIPUS) treatment could reduce lymphedema by enhancing anti-inflammatory macrophage polarization and microcirculation. Methods: The rat tail secondary lymphedema model was established through the surgical ligation of lymphatic vessels. The rats were randomly divided into the normal, lymphedema, and LIPUS treatment groups. The LIPUS treatment (3 min daily) was applied 3 days after establishing the model. The total treatment period was 28 days. Swelling, fibro adipose deposition, and inflammation of the rat tail were evaluated by HE staining and Masson's staining. The photoacoustic imaging system and laser Doppler flowmetry were used to monitor microcirculation changes in rat tails after LIPUS treatment. The cell inflammation model was activated with lipopolysaccharides. Flow cytometry and fluorescence staining were used to observe the dynamic process of macrophage polarization. Results: After 28 days of treatment, compared with the lymphedema group, the tail circumference and subcutaneous tissue thickness of rats in the LIPUS group were decreased by 30%, the proportion of collagen fibers and the lymphatic vessel cross-sectional area was decreased, and tail blood flow was increased significantly. Cellular experiments revealed a decrease in CD86+ macrophages (M1) after LIPUS treatment. Conclusion: The transition of M1 macrophage and the promotion of microcirculation could be responsible for the beneficial effect of LIPUS on lymphedema.

20.
PLoS One ; 18(4): e0282866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079570

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is one of the most common complications of diabetes and has become a major global cause of blindness. Curcumin, an extract of Curcuma longa (turmeric), is effective in preventing and treating diabetes. Recent studies have shown that curcumin can delay DR development. However, there has been no systematic review of its treatment of DR. This study will conduct a systematic review and meta-analysis of currently published randomized controlled trials (RCT) of curcumin for treating DR patients to evaluate its efficacy and safety. METHODS: We will search the relevant studies of curcumin in the treatment of DR in PubMed, Medline, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP, and Wanfang databases from their respective inception dates to May 2022. A meta-analysis of the data extracted from qualified RCTs will be conducted, including the progression of DR, visual acuity, visual field, macular edema, quality of life, and adverse events. The meta-analysis will be performed using Review Manager 5.4.1 software, and the results will be based on either random-effects or fixed-effects models, depending on the heterogeneity. The Grading of Recommendations, Development, and Evaluation (GRADE) system will be used to evaluate the reliability and quality of evidence. RESULTS: The results of this study will provide sound and high-quality evidence for the efficacy and safety of curcumin in the treatment of DR. CONCLUSION: This study will be the first meta-analysis to comprehensively assess the efficacy and safety of curcumin in the treatment of DR and will provide helpful evidence for the clinical management of this disease. SYSTEMATIC REVIEW REGISTRATION: INPLASY202250002.


Assuntos
Curcumina , Diabetes Mellitus , Retinopatia Diabética , Medicamentos de Ervas Chinesas , Humanos , Curcumina/efeitos adversos , Retinopatia Diabética/tratamento farmacológico , Revisões Sistemáticas como Assunto , Metanálise como Assunto , Medicamentos de Ervas Chinesas/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA